2014 J 15 AUH: 59 # MISSISSIPPI STATE DEPARTMENT OF HEALTH BUREAU OF PUBLIC WATER SUPPLY CCR CERTIFICATION CALENDAR YEAR 2013 | HMerica's CATCh Public Water Supply | Vame | |--|--| | List PWS ID #s for all Community Water Sy | | | The Federal Safe Drinking Water Act (SDWA) requires each Common Consumer Confidence Report (CCR) to its customers each year. Despects system, this CCR must be mailed or delivered to the customers, published customers upon request. Make sure you follow the proper procedures the composition of the CCR and Certification to MSDH. Please check as | unity public water system to develop and distribute a bending on the population served by the public water d in a newspaper of local circulation, or provided to the when distributing the CCR. You must mail, fax or ll boxes that apply. | | Customers were informed of availability of CCR by: (Attack | copy of publication, water bill or other) | | Advertisement in local paper (attach copy of On water bills (attach copy of bill) Email message (MUST Email the message Other | to the address below) | | Date(s) customers were informed:/,/ | | | CCR was distributed by U.S. Postal Service or other dimethods used | ect delivery. Must specify other direct delivery | | Date Mailed/Distributed:// | | | CCR was distributed by Email (MUST Email MSDH a copy
As a URL (Provide URL
As an attachment
As text within the body of the email messag | | | CCR was published in local newspaper. (Attach copy of publ | ished CCR or proof of publication) | | Name of Newspaper: | | | Date Published:// | | | CCR was posted in public places. (Attach list of locations) | FACM Date Posted: 6 //2 / Zo 14 | | CCR was posted on a publicly accessible internet site at the for | | | CERTIFICATION I hereby certify that the 2013 Consumer Confidence Report (CC public water system in the form and manner identified above a the SDWA. I further certify that the information included in thi the water quality monitoring data provided to the public water Department of Health, Bureau of Public Water Supply. Name/Title (President, Mayor, Owner, etc.) | nd that I used distribution methods allowed by s CCR is true and correct and is consistent with | | Deliver or send via U.S. Postal Service:
Bureau of Public Water Supply
P.O. Box 1700 | May be faxed to: (601)576-7800 | | Jackson, MS 39215 | May be emailed to: | May be emailed to: Melanie. Yanklowski@msdh.state.ms.us ### **CCR 2013** ### Spanish (Espanol) Este informe contiene informacion muy importante sobre la calidad de su agua potable. Por favor lea este informe o comuniquese con alguien que pueda traducir la informacion. ### Is my water safe? We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies. ### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). ### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). Source water assessment and its availability See manager Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. ### How can I get involved? Report any water problems to the manager #### **Description of Water Treatment Process** Your water is treated by disinfection. Disinfection involves the addition of chlorine or other disinfectant to kill dangerous bacteria and microorganisms that may be in the water. Disinfection is considered to be one of the major public health advances of the 20th century. Water Conservation Tips Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature. - Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. - Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month. - Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month. - Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month. - Water plants only when necessary. • - Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month. - Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation. - Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill! - Visit > a wigging activated place for more information. #### **Cross Connection Control Survey** The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and insuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary. - Boiler/ Radiant heater (water heaters not included) - Underground lawn sprinkler system - Pool or hot tub (whirlpool tubs not included) - Additional source(s) of water on the property - Decorative pond - Watering trough Source Water Protection Tips Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways: - Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source. - Pick up after your pets. - If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system. - Dispose of chemicals properly; take used motor oil to a recycling center. - Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team. - Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body. #### Other Information *****April 1, 2013 MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING***** In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionulides beginning January 2007 - December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Labortory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water system has completed the monitoring requirements and is now in compliance with the Radionuclides Rule. If you have any questions, please contact Karen Walters, Director of Compliance & Enforcement, Bureau of Public Water Supply, at (601)576 7518. #### Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. America's Catch - The Farm is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. ### **Water Quality Data Table** In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table. | f | T = = = = | 1 | · · · · · · · · · · · · · · · · · · · | · | *************************************** | £ | r | | | | | | | | |---|--|-----------|---------------------------------------|---------|---|-------------|------------------|---|--|--|--|--|--|--| | | MCLG | MCL, | I | | | ! | | | | | | | | | | | or | TT, or | 1 | 1 | inge | Sample | | | | | | | | | | Contaminants | MRDLG | | | Low | High | <u>Date</u> | <u>Violation</u> | Typical Source | | | | | | | | Disinfectants & Disi | Disinfectants & Disinfectant By-Products | | | | | | | | | | | | | | | (There is convincing | evidence th | at additi | on of a di | sinfect | ant is n | ecessary | for control of | of microbial contaminants) | | | | | | | | Chlorine (as Cl2)
(ppm) | 4 | 4 | 1.8 | 0.32 | | 2013 | No | Water additive used to control microbes | | | | | | | | Inorganic Contamin | Inorganic Contaminants | | | | | | | | | | | | | | | Nitrate [measured as
Nitrogen] (ppm) | 10 | 10 | 0,08 | NA | | 2013 | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | | | | | | | | Nitrite (measured as
Nitrogen) (ppm) | 1 | l | 0.02 | NA | | 2013 | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | | | | | | | | Cyanide [as Free Cn]
(ppb) | 200 | 200 | 15 | NA | | 2012 | No | Discharge from plastic and fertilizer factories; Discharge from steel/metal factories | | | | | | | | Antimony (ppb) | 6 | 6 | 0.5 | NA | | 2012 | | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition. | | | | | | | | Arsenic (ppb) | 0 | 10 | 0.5 | NA | | 2012 | | Erosion of natural deposits;
Runoff from orchards; Runoff
from glass and electronics
production wastes | | | | | | | | Barium (ppm) | 2 | 2 | 0.14131 | NA | | 2012 | No | Discharge of drilling wastes;
Discharge from metal
refineries; Erosion of natural
deposits | | | | | | | | Beryllium (ppb) | 4 | 4 | 0.5 | NA NA | | 2012 | No No | Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries | |------------------------------------|-----------|-------|----------|---|--|------|-------|--| | Cadmium (ppb) | 5 | 5 | 0.5 | NA | The state of s | 2012 | No | Corrosion of galvanized pipes
Erosion of natural deposits;
Discharge from metal
refineries; runoff from waste
batteries and paints | | Chromium (ppb) | 100 | 100 | 7.53 | NA | | 2012 | No | Discharge from steel and pulp
mills; Erosion of natural
deposits | | Fluoride (ppm) | 4 | 4 | 0.13 | NA | | 2012 | No | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories | | Mercury [Inorganic]
(ppb) | 2 | 2 | 0,5 | NA | | 2012 | No | Erosion of natural deposits;
Discharge from refineries and
factories; Runoff from
landfills; Runoff from
cropland | | Selenium (ppb) | 50 | 50 | 2.5 | ΝA | Water the Control of | 2012 | No | Discharge from petroleum and
metal refineries; Erosion of
natural deposits; Discharge
from mines | | Thallium (ppb) | 0.5 | 2 | 0.5 | NA | | 2012 | No | Discharge from electronics,
glass, and Leaching from
ore-processing sites; drug
factories | | Radioactive Contam | inants | | <u> </u> | *************************************** | | .1 | L | | | Uranium (ug/L) | 0 | 30 | 0.5 | NA | | 2012 | No | Erosion of natural deposits | | Volatile Organic Con | ntaminant | s | - | | | | | | | 1,2,4-Trichlorobenze
ne (ppb) | 70 | 70 | 0.5 | 0.5 | 0.5 | 2013 | No | Discharge from textile-finishing factories | | cis-1,2-Dichloroethyl
ene (ppb) | 70 | 70 | 0,5 | 0.5 | 0,5 | 2013 | No | Discharge from industrial chemical factories | | Xylenes (ppm) | 10000 | 10000 | 0,5 | 0.5 | 0.5 | 2013 | No | Discharge from petroleum factories; Discharge from chemical factories | | Dichloromethane
(ppb) | 0 | 5 | 0.5 | 0.5 | 0.5 | 2013 | No | Discharge from pharmaceutical and chemical factories | | o-Dichlorobenzene
(ppb) | 600 | 600 | 0.5 | 0.5 | 0.5 | 2013 | No | Discharge from industrial chemical factories | | p-Dichlorobenzene
(ppb) | 75 | 75 | 0.5 | 0.5 | 0.5 | 2013 | No | Discharge from industrial chemical factories | | Vinyl Chloride (ppb) | 0 | 2 | 0.5 | 0.5 | 0.5 | 2013 | No | Leaching from PVC piping;
Discharge from plastics
factories | | 1,1-Dichloroethylene
(ppb) | 1 7 | 7 | 0.5 | 0.5 | 0. | 5 2013 | | 0 | Discharge from industrial chemical factories | |---|-------|----------|----------------------|------------|----------|-----------|------|-----------|---| | trans-1,2-Dichloroetlylene (ppb) | 100 | 100 | 0.5 | 0.5 | 0. | 5 2013 | N | o | Discharge from industrial chemical factories | | 1,2-Dichloroethane (ppb) | 0 | 5 | 0.5 | 0.5 | 0, | 5 2013 | N | 0 | Discharge from industrial chemical factories | | 1,1,1-Trichloroethand
(ppb) | 200 | 200 | 0.5 | 0.5 | 0. | 5 2013 | N | | Discharge from metal
degreasing sites and other
factories | | Carbon Tetrachloride
(ppb) | 0 | 5 | 0.5 | 0.5 | 0.: | 5 2013 | N |) | Discharge from chemical plants and other industrial activities | | 1,2-Dichloropropane
(ppb) | 0 | 5 | 0.5 | 0,5 | 0.: | 5 2013 | N | | Discharge from industrial chemical factories | | Trichloroethylene
(ppb) | 0 | 5 | 0.5 | 0.5 | 0,3 | 5 2013 | No |) | Discharge from metal
degreasing sites and other
factories | | 1,1,2-Trichloroethane
(ppb) | 3 | 5 | 0.5 | 0,5 | 0.5 | 5 2013 | No | , | Discharge from industrial chemical factories | | Tetrachloroethylene
(ppb) | 0 | 5 | 0.5 | 0.5 | 0,5 | 5 2013 | No | | Discharge from factories and dry cleaners | | Benzene (ppb) | 0 | 5 | 0.5 | 0.5 | 0.5 | 2013 | No | , | Discharge from factories;
Leaching from gas storage
lanks and landfills | | Toluene (ppm) | 1000 | 1000 | 0.5 | 05 | 0.5 | 2013 | No | | Discharge from petroleum factories | | Ethylbenzene (ppb) | 700 | 700 | 0.5 | 0.5 | 0,5 | 2013 | No | | Discharge from petroleum refineries | | Styrene (ppb) | 100 | 100 | 0.5 | 0.5 | 0.5 | 2013 | No | ľ | Discharge from rubber and plastic factories; Leaching from landfills | | Chlorobenzene
monochlorobenzene)
ppb) | 100 | 100 | 0.5 | 0.5 | 0.5 | 2012 | No | Į | Discharge from chemical and
agricultural chemical factories | | Contaminants | MCLG | AL | Your
<u>Water</u> | Sam | • | # Sampl | 1 | xceed | | | norganic Contamina | nts | 1 4342 1 | | <u>Dat</u> | <u> </u> | Exceeding | TAT! | <u>AL</u> | Typical Source | | Copper - action level t consumer taps | 1.3 | 1.3 | 0.6 | 201 | 2 | O | | No | Corrosion of household
plumbing systems; Erosion
of natural deposits | | cad - action level at
onsumer taps (ppb) | 0.015 | 0.015 | 0.001 | 201 | 2 | 0 | | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Unit Descriptions | | | | | | | | | | | |-------------------|---|--|--|--|--|--|--|--|--|--| | Term | Definition | | | | | | | | | | | ug/L | ug/L: Number of micrograms of substance in one liter of water | | | | | | | | | | | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | | | | | | | | | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | | | | | | | | | | NA NA | NA: not applicable | |-------|---| | ND | ND: Not detected | | NR | NR: Monitoring not required, but recommended. | | Important Drinking Water Definition | PDS | |-------------------------------------|---| | Term | Definition | | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | TT | TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | MRDL | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | MNR | MNR: Monitored Not Regulated | | MPL | MPL: State Assigned Maximum Permissible Level | ### For more information please contact: Contact Name: Vernon Howell Address: PO Box 584 Itta Bena, MS 38941 Phone: 662-254-7200 Fax: 662-254-9776 E-Mail: vernonh@catfish.com America's Catch, Inc. P.O. Box 584 • Itta Bena, MS 38941 2013 Consumer Confidence Report is available at the Farm Office. For further information call Vernon Howell 662-609-1562. 2013 소비자 신뢰 보고 농장 사무실에 제공 됩니다. 자세한 내용은 전화 버논 하 웰 662-609-1562. Informe de confianza del consumidor 2013 está disponible en la oficina de la granja. Para más información llame a Vernon Howell 662-609-1562. ### 2014 OCT -2 AM 10: 41 ### **Certification Form** | CWS name: | America's Catch - The Farm | |--|--| | | 0420045 | | distributed to customertifies that the | water system named above hereby confirms that its consumer confidence report has been stomers (and appropriate notices of availability have been given). Further, the system information contained in the report is correct and consistent with the compliance previously submitted to the primacy agency. | | Title | VERNON Howell Operator 662-609-1562 Date 10-1-14 | | to your state. Che | equired by EPA rules to report the following information, but you may want to provide it eck all items that apply. *** stributed by mail or other direct delivery. Specify other direct delivery methods: | | following 1 | " efforts were used to reach non-bill paying consumers. Those efforts included the methods as recommended by the primacy agency: | | | ling the CCR to postal patrons within the service area. (attach zip codes used) | | | ertising availability of the CCR in news media (attach copy of announcement) | | pub | lication of CCR in local newspaper (attach copy) | | post | ing the CCR in public places (attach a list of locations) FACM Office | | | very of multiple copies to single bill addresses serving several persons such as: artments, businesses, and large private employers | | deli | very to community organizations (attach a list) | | | systems serving at least 100,000 persons) Posted CCR on a publicly-accessible Internet e at the address: www | | Deli | vered CCR to other agencies as required by the primacy agency (attach a list) | ### **Corrected CCR** ### Spanish (Espanol) Este informe contiene informacion muy importante sobre la calidad de su agua potable. Por favor lea este informe o comuniquese con alguien que pueda traducir la informacion. ### Is my water safe? We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies. ### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). ### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). ### Source water assessment and its availability See manager ### Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. ### How can I get involved? Report any water problems to the manager #### **Water Conservation Tips** Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature. - Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. - Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month. - Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month. - Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month. - Water plants only when necessary. - Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month. - Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can - absorb it and during the cooler parts of the day to reduce evaporation. - Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill! - Visit www.epa.gov/watersense for more information. ### **Cross Connection Control Survey** The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and insuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary. - Boiler/ Radiant heater (water heaters not included) - Underground lawn sprinkler system - Pool or hot tub (whirlpool tubs not included) - Additional source(s) of water on the property - Decorative pond - Watering trough ### **Source Water Protection Tips** Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways: - Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source. - Pick up after your pets. - If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system. - Dispose of chemicals properly; take used motor oil to a recycling center. - Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team. - Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body. #### Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. America's Catch - The Farm is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. ### **Water Quality Data Table** In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table. | | MCLG | MCL, | | | | | | | | | | | | | |---|--|--------|---------|------|-------------|-------------|------------------|---|--|--|--|--|--|--| | | or | TT, or | Your | Ra | nge | Sample | | | | | | | | | | Contaminants | MRDLG | MRDL | Water | Low | <u>High</u> | <u>Date</u> | Violation | Typical Source | | | | | | | | Disinfectants & Disin | Disinfectants & Disinfectant By-Products | | | | | | | | | | | | | | | (There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants) | | | | | | | | | | | | | | | | Haloacetic Acids
(HAA5) (ppb) | NA | 60 | 1 | NA | | 2013 | No | By-product of drinking water chlorination | | | | | | | | Chlorine (as Cl2)
(ppm) | 4 | 4 | 0.7 | 0.27 | 1.8 | 2013 | No | Water additive used to control microbes | | | | | | | | TTHMs [Total
Trihalomethanes]
(ppb) | NA | 80 | 1.3 | NA | | 2013 | No | By-product of drinking water disinfection | | | | | | | | Inorganic Contamin | ants | | | | | | | | | | | | | | | Barium (ppm) | 2 | 2 | 0.14131 | NA | | 2013 | No | Discharge of drilling wastes;
Discharge from metal
refineries; Erosion of natural
deposits | | | | | | | | Fluoride (ppm) | 4 | 4 | 0.13 | NA | | 2013 | No | Erosion of natural deposits;
Water additive which
promotes strong teeth;
Discharge from fertilizer and
aluminum factories | | | | | | | | Nitrate [measured as
Nitrogen] (ppm) | 10 | 10 | 0.08 | NA | | 2013 | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | |---|------------|----------|---------------|------------|--------------|------|----|---| | Nitrite [measured as
Nitrogen] (ppm) | 1 | 1 | 0.02 | NA | | 2013 | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | | Antimony (ppb) | 6 | 6 | 0.5 | NA | | 2013 | No | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition. | | Arsenic (ppb) | 0 | 10 | 0.5 | NA | | 2013 | No | Erosion of natural deposits;
Runoff from orchards; Runoff
from glass and electronics
production wastes | | Beryllium (ppb) | 4 | 4 | 0.5 | NA | | 2013 | No | Discharge from metal
refineries and coal-burning
factories; Discharge from
electrical, aerospace, and
defense industries | | Cadmium (ppb) | 5 | 5 | 0.5 | NA | | 2013 | No | Corrosion of galvanized pipes;
Erosion of natural deposits;
Discharge from metal
refineries; runoff from waste
batteries and paints | | Chromium (ppb) | 100 | 100 | 7.53 | NA | | 2013 | No | Discharge from steel and pulp mills; Erosion of natural deposits | | Cyanide [as Free Cn]
(ppb) | 200 | 200 | 15 | NA | | 2013 | No | Discharge from plastic and fertilizer factories; Discharge from steel/metal factories | | Mercury [Inorganic]
(ppb) | 2 | 2 | 0.5 | NA | | 2013 | No | Erosion of natural deposits;
Discharge from refineries and
factories; Runoff from
landfills; Runoff from
cropland | | Selenium (ppb) | 50 | 50 | 2.5 | NA | | 2013 | No | Discharge from petroleum and
metal refineries; Erosion of
natural deposits; Discharge
from mines | | Thallium (ppb) | 0.5 | 2 | 0.5 | NA | | 2013 | No | Discharge from electronics, glass, and Leaching from ore-
processing sites; drug factories | | Radioactive Contam | inants | , | | | | | | | | Uranium (ug/L) | 0 | 30 | 0.5 | NA | | 2013 | No | Erosion of natural deposits | | Volatile Organic Cor | ntaminants | <u> </u> | 1 | 1 | | | I | 1 | | Toluene (ppm) | 1 | 1 | 0.0005 | 0.00
05 | 0.000
5 | 2013 | No | Discharge from petroleum factories | | Xylenes (ppm) | 10 | 10 | 0.0005 | 0.00
05 | 0.000
543 | 2013 | No | Discharge from petroleum factories; Discharge from chemical factories | | <u>Contaminants</u> | MCLG | <u>AL</u> | Your
<u>Water</u> | Sam
<u>Da</u> | ~ { | # Samp
Exceeding | | Exceed AL | Typical Source | |---|------|-----------|----------------------|------------------|-----|---------------------|----------|-----------|---| | Vinyl Chloride (ppb) | 0 | 2 | 0.5 | 0.5 | 0.5 | | <u> </u> | No | Leaching from PVC piping; Discharge from plastics factories | | Trichloroethylene
(ppb) | 0 | 5 | 0.5 | 0.5 | 0.5 | 5 2013 | 1 | No | Discharge from metal degreasing sites and other factories | | 1,1,2-Trichloroethane
(ppb) | 3 | 5 | 0.5 | 0.5 | 0.5 | 2013 | | | Discharge from industrial chemical factories | | 1,1,1-Trichloroethane (ppb) | 200 | 200 | 0.5 | 0.5 | 0.5 | 2013 | No | | Discharge from metal degreasing sites and other factories | | 1,2,4-
Trichlorobenzene
(ppb) | 70 | 70 | 0.5 | 0.5 | 0.5 | 5 2013 |] | | Discharge from textile-
finishing factories | | Tetrachloroethylene (ppb) | 0 | 5 | 0.5 | 0.5 | 0.5 | 2013 | 1 | | Discharge from factories and dry cleaners | | Styrene (ppb) | 100 | 100 | 0.5 | 0.5 | 0.5 | 2013 |] | No | Discharge from rubber and plastic factories; Leaching from landfills | | Ethylbenzene (ppb) | 700 | 700 | 0.5 | 0.5 | 0.5 | 2013 |] | | Discharge from petroleum refineries | | 1,2-Dichloropropane (ppb) | 0 | 5 | 0.5 | 0.5 | 0.5 | 2013 | 1 | | Discharge from industrial chemical factories | | Dichloromethane (ppb) | 0 | 5 | 0.5 | 0.5 | 0.5 | 2013 |] | No | Discharge from pharmaceutical factories | | trans-1,2-
Dichloroethylene
(ppb) | 100 | 100 | 0.5 | 0.5 | 0.5 | 2013 | ì | NO | Discharge from industrial chemical factories | | cis-1,2-
Dichloroethylene
(ppb) | 70 | 70 | 0.5 | 0.5 | 0.5 | 2013 | 1 | | Discharge from industrial chemical factories | | 1,1-Dichloroethylene
(ppb) | 7 | 7 | 0.5 | 0.5 | 0.5 | 2013 | 1 | | Discharge from industrial chemical factories | | 1,2-Dichloroethane (ppb) | 0 | 5 | 0.5 | 0.5 | 0.5 | 2013 | ì | | Discharge from industrial chemical factories | | p-Dichlorobenzene
(ppb) | 75 | 75 | 0.5 | 0.5 | 0.5 | 2013 | ľ | | Discharge from industrial chemical factories | | o-Dichlorobenzene
(ppb) | 600 | 600 | 0.5 | 0.5 | 0.5 | 2013 | ľ | | Discharge from industrial chemical factories | | Chlorobenzene
(monochlorobenzene)
(ppb) | 100 | 100 | 0.5 | 0.5 | 0.5 | 2013 | ľ | | Discharge from chemical and agricultural chemical factories | | Carbon Tetrachloride
(ppb) | 0 | 5 | 0.5 | 0.5 | 0.5 | 2013 | ١ | No j | Discharge from chemical plants and other industrial activities | | Benzene (ppb) | 0 | 5 | 0.5 | 0.5 | 0.5 | 2013 | ľ | No I | Discharge from factories;
Leaching from gas storage
tanks and landfills | | Inorganic Contamina | norganic Contaminants | | | | | | | | | | | | | |--|-----------------------|-----|-------|------|---|----|--|--|--|--|--|--|--| | Copper - action level
at consumer taps
(ppm) | 1.3 | 1,3 | 6E-10 | 2012 | 0 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | | | | | | | Lead - action level at consumer taps (ppb) | 0 | 15 | 1 | 2012 | 0 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | | | | | | | nit Descriptions | | | |------------------|---|--| | Term | Definition | | | ug/L | ug/L: Number of micrograms of substance in one liter of water | | | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | | NA | NA: not applicable | | | ND | ND: Not detected | | | NR | NR: Monitoring not required, but recommended. | | | Important Drinking Water Definitions | | | |--------------------------------------|---|--| | Term | Definition | | | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | | TT | TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | | | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | | MRDL | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | | MNR | MNR: Monitored Not Regulated | | | MPL | MPL: State Assigned Maximum Permissible Level | | Contact Name: Vernon Howell Address: PO Box 584 Itta Bena, MS 38941 Phone: 662-254-7200 Fax: 662-254-9776 E-Mail: andrews@catfish.com 2014 OCT -2 AM 10: 41 ## America's Catch, Inc. P.O. Box 584 • Itta Bena, MS 38941 A corrected copy of the 2013 Consumer Confidence Report is available at the Farm Office. For further information call Vernon Howell 662-609-1562. 2013 소비자 신뢰 보고의 정정한 사본을 농장 사무실은 있다. 자세한 내용은 전화 버논하 웰 662-609-1562. Una copia corregida del informe de confianza del consumidor 2013 está disponible en la oficina de la granja. Para más información llame a Vernon Howell 662-609-1562.